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Abstract 

Threat Modeling is essential for identifying cybersecurity threats in software before implementation. It is a cornerstone of 

secure development. Currently, most threat modeling tasks are performed manually. Often human practioners have to recreate 

the threat modeling diagrams using archtiecture diagrams leading to delays. In practice, business teams often provide diagrams 

with ambiguous or unclear details. Advances in Artificial Intelligence (AI) have enabled multimodal Large Language Models 

(LLMs) to process both text and images. These models can extract security-relevant information from raw architectural diagram 

images. However, existing benchmarks for these models primarily assess general visual reasoning rather than security-specific 

capabilities. Key elements for threat modeling, such as entities, assets, call flows, trust boundaries, threat actors, and security 

properties, are missing from current LLM benchmarks. 

This paper introduces ThreatVisionEval, a conceptual evaluation framework for multimodal LLMs. These are AI models 

capable of analyzing both images and text for vision-based threat modeling. The five core elements in the framework are : (1) 

a hierarchical task taxonomy,covers element and security property detection (2) a diagram variability model, handling notation, 

clarity, completeness, domain, and complexity; (3) a ground-truth annotation schema based on STRIDE elements (Spoofing, 

Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege); (4) a metric suite including per-

category F1 scores, Flow-Triple F1 for flow extraction, Boundary-IoU for boundary detection, and the Threat-Modeling-

Readiness Score (TMRS); and (5) a prompt library with example questions and instructions, covering zero-shot, chain-of-

thought, security-persona, and few-shot protocols. 

By incorporating these five core elements, ThreatVisionEval offers clear definitions, reproducible protocols, and a practical 

roadmap. The framework enables systematic comparison of vision-language models for automated threat modeling. The paper 

also presents a research agenda. It recommends that the security, AI, and research communities adopt ThreatVisionEval as the 

standard for evaluating security-critical diagram understanding. This will facilitate accelerated progress and ensure robust, 

consistent outcomes.  

© 2025 STAIQC. All rights reserved. 
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1. Introduction 

Threat modeling is recognized as an effective security practice by established frameworks such as OWASP 

(Open Web Application Security Project), NIST SSDF (National Institute of Standards and Technology Secure 

Software Development Framework), and Microsoft’s Security Development Lifecycle [1][2][3]. However, fewer 

than 30% of development teams implement threat modeling systematically, and even fewer maintain updated 

models [4].  

 

 

Email: g.santoshpai@gmail.com, kuntesrk@gmail.com 

© 2025 STAIQC. All rights reserved. 

mailto:g.santoshpai@gmail.com
mailto:kuntesrk@gmail.com


90   Santosh Pai and Srinivasa Rao Kunte R, Sparklinglight Transactions on Artificial Intelligence and Quantum 

Computing (STAIQC), 5(2), 89-98.    

 

 

The challenge is not the lack of methodology; frameworks such as STRIDE (Spoofing, Tampering, 

Repudiation, Denial of Service, Elevation), LINDDUN (Linking, Identifying, Non-repudiation, Detecting, Data 

Disclosure, Unawareness, and Non-compliance), PASTA (Process of Attack Simulation and Threat Analysis), and 

Attack Trees provide comprehensive approaches. Primary challenge in automation of threat modeling is related to 

manual activities involved. The diagram creation in the threat modeling software is one of the time-consuming 

activities, as it involves re-creating or enhancing the existing architecture diagram to a format accepted by the 

threat modeling automation framework. 

Multimodal LLMs can now process both images and text. This opens new avenues for automating threat 

modeling. Models such as GPT-4V, Claude-3.5-Sonnet, and Gemini-1.5-Pro can convert software diagrams into 

structured representations. These models work well with simple diagrams, but real-world diagrams from 

companies often include extra marks and mixed styles, making them hard to analyze. 

This paper fills that gap by introducing a framework for evaluating multimodal LLMs in vision-based threat 

modeling which is named in our research as “ThreatVisionEval”. Unlike general visual question answering, 

ThreatVisionEval focuses on extracting core elements needed for STRIDE threat modeling. The framework 

includes a task taxonomy, a diagram variability model, a JSON ground-truth schema, a comprehensive metric suite 

comprising the Threat Modeling Readiness Score (TMRS), and a prompt library for practical use. Reproducible 

guidelines enable model comparison and highlight deployment challenges.  

2. Literature Review 

From the previous research conducted on threat modeling automation we have identified primary challenge as 

substantial manual effort required to produce accurate diagrams, which often results in ambiguous or outdated 

representations [5][6] [7] [8] [9]. The advancements in AI and LLMs have greatly helped to automate various 

aspects of threat modeling. 

We reviewed the existing research works in benchmarking the LLMs. Existing diagram-understanding 

benchmarks give limited insight for security practitioners. Datasets such as AI2D [10], ChartQA [11], FigureQA 

[12], and DocVQA [13] were made for general visual reasoning, document layout analysis, or software 

comprehension. These are not built for security applications. Such benchmarks primarily evaluate the extraction 

of functional components and their relationships. They omit critical security elements, including trust boundaries, 

authentication, and encryption on flows, explicit threat actors, and differences between protected assets and regular 

data stores. High performance on these benchmarks does not ensure that models can identify all STRIDE threat 

categories. For example, they may miss spoofing across trust boundaries or information disclosure over 

unencrypted channels. Because benchmark goals differ from security needs, the adoption of multimodal LLMs in 

security is inconsistent. Despite claims of “automated threat modeling from diagrams” in research and industry, 

there is no standard evaluation protocol to validate such claims. 

[14] proposes a benchmarking method for LLMs based on privacy knowledge within the models, covering eight 

privacy aspects. [15] presents a benchmarking method focused on Swedish medical domains, emphasizing clinical 

inference relevance. Eighteen LLMs were evaluated using this benchmark; three ranked highest. [16] introduced 

sixty multiple-choice questions that assess areas covered by several benchmarks, enabling quick reviews for LLM 

adopters. The questions are designed to be completed by humans in one hour. [17] defines an accelerated 

benchmark for LLM inference by breaking it into multiple stages, with metrics for each. This benchmark is 

primarily used for chatbots and live translators. [18] describes a model that helps evaluate detection systems that 

differentiate between human- and LLM-written text. The benchmark helps develop systems that support ethical 

use of AI in education and science. 

While these benchmarks cover various domains, none specifically target security threat modeling. This work 

will investigate the application of LLMs to security threat modeling. 

3. ThreatVisionEval: The Proposed Evaluation Framework 

Before detailing the technical components, it is essential to outline the guiding principles that inform the design 

of ThreatVisionEval and differentiate it from generic diagram-understanding benchmarks. 

The framework is designed with security as its primary focus. Most existing datasets keep diagrams in their 

original form. In contrast, ThreatVisionEval extracts information essential for threat modeling. Standards such as 

Microsoft STRIDE, OWASP Threat Modeling Playbook [19], MITRE ATT&CK for Enterprise [20], and NIST 

SP 800-53 [21] are used to create a detailed list of elements needed for threat modeling. This ensures the framework 

checks a model’s ability to detect these key elements, even if the input diagrams are incomplete, unusual, or 

unclear. 
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Second, ThreatVisionEval has prioritized reality over ideal datasets. Many benchmarks use refined images of 

diagrams, whereas in actual security assessments, this is rarely the case. The framework expects different types of 

diagrams, including whiteboard photos, low-quality images from presentations, outdated files with missing 

elements, and screenshots. To better align with the realities faced by Threat modelers, the framework considers 

visual noise, missing labels, and confusing notations as crucial evaluation criteria. This ensures we push models 

to demonstrate not just ideal performance on clean images, but also robustness. Adoptability and reproducibility 

are central design principles of the framework. Each component is thoroughly documented and provided in 

machine-readable formats, including task definitions, JSON schemas, metric formulae, and prompts. This level of 

detail enables a single researcher with moderate security expertise to efficiently construct a dataset of 60 diagrams, 

in contrast to the substantial effort required by frameworks such as AI2D or DocVQA [22] [23]. 

The framework is designed to be extensible, versioned, and future-proof, allowing for community-driven 

extensions without compromising the comparability of results from prior evaluations. The strength of the 

benchmark proposed lies in the five pillars present in the framework. These pillars work collectively to make the 

framework security focused benchmark. The Hierarchical task taxonomy pillar evaluates the component detection 

capabilities in the LLM with five levels that cover basic element detection to security property extraction. Diagram 

variability model evaluates LLMs ability to not only extract elements from ideal clean images, but a diverse dataset 

of real-world noisy architecture diagrams. The ground truth annotation schema ensures evaluators build the gold 

dataset in a standard consistent format that is ready for machine processing. Dedicated metric suite is an adoption 

of generic metrics for threat modeling focused evaluations of LLMs. The final pillar is a set of standard LLM 

prompts that ensure evaluations are fair and unbiased across different LLMs. 

3.1. Hierarchical Task Taxonomy 

Hierarchical Task Taxonomy in ThreatVisionEval is listed in Table 1. The multimodal LLM capabilities are 

organized into five progressive levels, L1 to L5. The levels represent the real-world threat modeling tasks, starting 

from basic component detection at L1 to security property extraction at L5. The five layers are designed to ensure 

the framework provides granular, actionable evaluations that mimic the human threat modeler's reasoning abilities. 

Table 1. Hierarchical Task Taxonomy 

Level 

Identifier 

Task Description Importance in Threat Modeling 

L1 Detect and classify components 

(processes, data stores, external 

entities) 

Foundational input to form the 

complete attack surface allowing 

threat enumeration 

L2 Extract directed data/call flows with 

protocols 

Essential for detecting information 

disclosure and repudiation threats 

L3 Identify trust boundaries and zone 

membership 

Crucial for finding spoofing, 

elevation of privilege, and lateral 

movement threats 

L4 Infer threat actors (even when not 

explicitly marked as malicious) 

Provides insights about external 

attacker entry points in the system 

L5 Extract security properties 

(authentication mechanism, 

encryption, integrity checks) 

Important for mitigation generation, 

and threat detection of Spoofing, 

Tampering, Information Disclosure 

categories 

 

To pinpoint the exact failure mode, the evaluation must report performance separately at each level (L1-L5) for 

the LLMs. 

3.2. Diagram Variability Model 

The Diagram Variability Model is a distinctive pillar of the framework, ensuring evaluations reflect the 

complex, ambiguous conditions typical of human-involved threat modeling sessions. Unlike generic frameworks 

that rely on labeled, cleaned images for benchmarking [24] [25] [26], ThreatVisionEval incorporates six 

orthogonal sources of real-world degradation in architecture diagrams.  This approach requires models to handle 
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balanced samples across Data Flow Diagrams (DFDs), C4, Unified Modeling Language (UML), and informal 

architecture sketches [27] [28] [29] [30].  

Table 2 shows the different axes in the Diagram Variability Model. The Visual Quality property assesses 

sensitivity to compression, scanner noise, and overlapping handwriting. Completeness evaluates whether the 

model hallucinates or remains conservative when critical security elements are absent. The Domain property 

prevents overfitting to specific domains. The framework expects models to extract domain-specific information 

during evaluation. Complexity scaling identifies performance degradation in large diagrams.  The input 

architecture may be highly complex, containing numerous elements typical of enterprise-scale diagrams. Legend 

and Annotation variation tests the model’s ability to infer key security information when details are partially or 

entirely missing. 

 

Table 2. Axis in Diagram Variability Model 

Axis Categories / Values Purpose in Threat Modeling 

Evaluation 

Visual Quality Clean vector, Screenshot 

(compression), Scanned/hand drawn, 

Heavily overlapping/faded text 

Measures robustness to real-world 

capture artefacts 

Completeness Complete, Missing components, 

Missing flows, 

Contradictory/misleading arrows 

Evaluates hallucination control and 

conservative reasoning 

Domain Web applications, Cloud-

native/microservices, 

IoT/OT/SCADA, Mobile backend, 

Payment systems 

Prevents domain over-fitting; tests 

transferability 

Complexity Small (≤10 elements), Medium (11–

25 elements), Large (>25 elements) 

Exposes scalability limits in large 

enterprise architectures 

Legend & 

Annotation 

Legend fully inside image, Legend 

cropped/outside image, No legend at 

all 

Tests symbolic reasoning and 

resistance to missing contextual 

keys 

 

 

This multi-axis design ensures that models achieving high scores are genuinely effective for security threat 

modeling. A minimum of 60 architecture diagrams, stratified across the six categories [31], is required to evaluate 

model capabilities thoroughly. 

3.3. Ground Truth Annotation Schema 

The purpose of the Ground Truth Annotation Schema is for the evaluator to prepare a golden JSON structure 

for each input architecture image. The golden JSON is then compared with the JSON generated by the LLM. 

Comparing the golden JSON with LLM generated JSON will reveal how accurately the LLM has parsed the input 

architecture diagram image. 

The schema specifies a minimal set of fields to represent architectural diagrams, including diagram_id, assets, 

entities, trust_boundaries, data_flows, and threat_actors, ensuring unambiguous labeling. Its compact design 

reduces the effort required to generate reference JSONs, making it feasible for evaluators with limited resources 

to build substantial datasets. Despite its simplicity, the schema remains sufficiently expressive to capture all 

necessary elements for automated threat enumeration. 

Another advantage of such a standardized schema is that it avoids subjective human judgment. The standardized 

schema mitigates subjective human judgment and enables automated scoring during evaluation. Enforcing this 

schema ensures consistent scoring across various LLMs, enhancing the reliability of the proposed framework.  

The schema is defined as below in JSON format: 

{ 

    "diagram_id": "string", 

    "source_description": "optional free text", 

    "assets": [ 

        "string" 

    ], 

    "entities": [ 

        { 
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            "name": "string", 

            "type": "process|datastore|external_entity", 

            "trust_zone": "string" 

        } 

    ], 

    "trust_boundaries": [ 

        { 

            "name": "optional string", 

            "zones": [ 

                "Internet", 

                "DMZ", 

                "Internal" 

            ] 

        } 

    ], 

    "data_flows": [ 

        { 

            "source": "string", 

            "target": "string", 

            "protocol": "optional string", 

            "authentication": "none|basic|mutual_tls|oauth2|jwt|kerberos|certificate", 

            "encryption": "boolean", 

            "integrity": "boolean optional" 

        } 

    ], 

    "threat_actors": [ 

        "string" 

    ] 

} 

 

3.4. Dedicated Metric Suite 

We have designed a quantitative measure for ThreatVisionEval to objectively assess how well the multimodal 

LLM understands input architecture diagrams, as required for threat modeling. Five metrics are defined in this 

suite, as shown in Table 3. 

 

Table 3. Dedicated Metric Suite 

Metric 

Identifier 

Metric Name Definition / Computation 

 

Rationale (Why It Matters for 

Threat Modeling) 

1 Asset / Entity / Threat-

Actor F1 

Token-level F1 with fuzzy 

matching (ratio ≥ 0.90) 

Tolerates minor OCR/spelling 

variations 

2 Flow-Triple F1 Exact (source, target, 

protocol); 0.5 credit if protocol 

missing 

Protocol labels are frequently 

omitted 

3 Trust-Boundary IoU Jaccard index over zone pairs Boundaries are set-based 

4 Security-Property 

Accuracy 

Exact match on authentication 

type and encryption/integrity 

flags 

Directly determines the correctness 

of spoofing & disclosure analysis 

5 Threat-Modeling-

Readiness Score 

(TMRS) 

(0.35 × Flow_F1 + 0.30 × 

Boundary_IoU + 0.20 × 

(Asset+Entity+Actor)_F1 + 

0.15 × Property_Acc) 

Single comparable headline metric 

The first metric, 'Asset / Entity / Threat-Actor F1', evaluates the model's ability to extract element names from 
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architecture diagrams accurately. Tolerance is incorporated to account for common Optical Character 

Recognition (OCR) errors and spelling variations in diagram labels. 

The second metric is ‘Flor-Triple F1’, which rewards models for correctly detecting flow direction and 

connectivity. A tolerance is included to forgive label omissions in the input diagrams. 

The third metric, ‘Trust Boundary IoU (Intersection over Union)’, uses the Jaccard index [32] applied to zone 

pairs (e.g., “Internet” and “Public cloud”). This approach treats boundaries as sets rather than pixels, enhancing 

robustness to variations in dashed line styles. This metric is essential for detecting threats associated with lateral 

movement. 

The fourth metric, "Security-Property Accuracy," answers simple yes-or-no questions about Encryption and 

Authentication between the elements. The metric considers these properties as the most critical from a security 

perspective. This metric checks whether AI can adequately understand the current encryption and authentication 

between elements, ensuring these vital properties are not misinterpreted.  

The fifth metric, TMRS (Threat-Modeling-Readiness Score), aggregates the previously discussed scores into a 

single value ranging from 0 to 1. An LLM achieving a TMRS of 0.85 or higher demonstrates performance 

comparable to that of human experts in understanding architectural diagrams. The TMRS is calculated using 

formula 1. 

TMRS= (0.35 ×  𝐹𝑙𝑜𝑤_𝐹1 +  0.30 ×  𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦_𝐼𝑜𝑈 +  0.20 × (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐴𝑠𝑠𝑒𝑡/𝐸𝑛𝑡𝑖𝑡𝑦/𝐴𝑐𝑡𝑜𝑟 𝐹1) +  0.15 ×  𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝐴𝑐𝑐)              
(1)      

Overall, this pillar transforms subjective diagram parsing into objective, threat-focused benchmarking, paving 

the way for reliable AI-assisted threat modeling.  

3.5. Standardized Prompt Library 

One challenge in the evaluation is the lack of standardized prompts for inference with LLMs. If allowed to use 

tricky or tweaked prompts, the evaluation results will not be satisfactory. To ensure consistency, our proposed 

framework includes standardized prompts. These prompts ensure the evaluation is not tied to the prompt but to the 

LLM's ability to detect the security-related elements of the actual architecture diagram.  

The library uses four prompts detailed in Table 4. 

 

Table 4. List of Standardized Prompts 

Standard Prompt Description 

 

Zero Shot Expert No examples are provided to 

LLM in this prompt. 

Chain-of-Thought Explicitly tell the model to 

reason step by step for threat 

detection 

Security-Persona Places the model in the role of 

a Senior application security 

architect 

Few-Shot Provide three fully annotated 

input diagrams and output 

JSON examples, and then the 

actual input diagram. 

 

These prompts encompass scenarios ranging from a complete cold start to those encountered by security experts 

in production settings. The prompts are standardized across models and research groups, ensuring fair and 

consistent evaluation. Detailed prompt descriptions are provided below. 

• Zero Shot prompt template 

You are an expert threat modeler. Looking only at the provided architecture diagram image, extract in 

strict JSON format using the following schema: 

 

{ 

    "assets": ["..."], 
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    "entities": [{"name": "...", "type": "process|datastore|external_entity", "trust_zone": "..."}], 

    "trust_boundaries": [{"name": "...", "zones": ["...", "..."]}], 

    "data_flows": [{"source": "...", "target": "...", "protocol": "...", "authentication": 

"none|basic|jwt|oauth2|mutual_tls|...", "encryption": true|false}], 

    "threat_actors": ["..."] 

} 

 

Include ONLY what is clearly visible in the diagram. Do not guess or add anything that is not shown. 

• Chain-of-Thought prompt template 

You are an expert threat modeler performing STRIDE analysis. Examine the diagram step by step: 

 

1. List every box, circle, cloud, or labelled shape and classify it as process, datastore, or external entity. 

2. For each shape, note the text label and any trust zone it sits inside (Internet, DMZ, Internal, etc.). 

3. Trace every arrow/line, identify source and target, and note any protocol or lock icon. 

4. Identify any dashed rectangles, shaded areas, or firewall icons that represent trust boundaries. 

5. Note any external attacker icons or untrusted entities. 

 

Now, based only on the above observations, output the extraction in the exact JSON schema provided in 

the zero-shot prompt. Do not add anything that is not visible. 

 

• Security-Persona prompt template 

 

You are a senior application security architect with 15 years of experience performing STRIDE and 

LINDDUN threat modeling at Fortune-500 companies. Your job is to translate architectural diagrams 

into precise data flow diagrams for threat identification. 

 

Looking at the provided diagram image, extract ONLY the elements that are clearly depicted using this 

exact JSON schema: 

 

{same schema as above} 

 

You are extremely conservative: if something is ambiguous or not shown, leave it out or mark it as 

unknown. Never hallucinate security properties. 

 

• Few-Shot prompt template 

You are an expert threat modeler. Here are three fully annotated examples of architecture diagrams and 

their correct JSON outputs: 

 

<Example 1 – image + correct JSON> 

<Example 2 – image + correct JSON> 

<Example 3 – image + correct JSON> 

 

Now, using the same JSON schema and level of precision, analyze the following diagram and output only 

the JSON. 

<target diagram image> 

4. Guidelines for Framework Instantiation and Dataset Creation 

This section presents a practical, step-by-step guide enabling researchers and practitioners to produce a 

ThreatVisionEval-compliant dataset and evaluation within four weeks using minimal resources. Evaluators can 

utilize these guidelines to generate data, execute model evaluations, and publish stratification tables and TMRS 

values. Comprehensive instructions ensure comparability across studies. 
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4.1. Guideline on recommended dataset size and structure 

Precise dataset size requirements have been established to ensure reliability and practical relevance. The 

minimum viable dataset comprises 60 architecture diagrams, while 100–150 diagrams are recommended for robust 

formal publication. Strict stratification is required to achieve comprehensive coverage across all variability axes. 

A sample dataset of 100 diagrams should be distributed across domains and visual quality. For instance, 25 

diagrams may originate from web applications, 25 from cloud-native applications, 25 from Internet of Things 

systems, 15 from the payment industry, and 10 from other sectors. Visual quality should also be varied, including 

30 clean diagrams with precise data flows and labels, 30 screenshots from books and existing drawings, 20 

handwritten or scanned diagrams, and 20 diagrams characterized by significant noise and overlapping elements. 

This ensures the evaluation results are close to real-world assessments. 

4.2. Guideline on diagram collection strategy 

It is crucial to perform the evaluation, ensuring the process is legally compliant and ethical. The first and most 

important requirement is that the dataset must come from openly accessible sources explicitly licensed for research 

purposes, or the evaluator must have licenses from the diagram owners. One of the resources evaluators can use is 

public GitHub repositories, which typically include README files and architecture markdown files. Official 

documentation of widely used projects such as Kubernetes, Apache, and Istio can be readily used for the 

evaluation. Publicly available reference architectures from AWS (Amazon Web Services), NIST, or OWASP can 

be used for evaluation when specific architecture diagrams are required. In contrast, it is not recommended to use 

internal, confidential diagrams protected by organizational or customer licenses, or to use customer reports, as they 

cannot be published, and results may not be transparent to the users of the evaluation. However, for an 

organization's internal tool validation or evaluation, it is allowed to use such confidential diagrams as required. 

4.3. Guidelines on annotation workflow 

The annotation process is critical for ensuring high-quality, consistent ground-truth labeling in 

ThreatVisionEval evaluations. It is recommended to engage two independent annotators, at least one of whom has 

practical threat modeling experience, to create JSON files in accordance with the prescribed schema. Open-source 

tools such as Label Studio can expedite annotation, enabling completion in under four minutes per diagram. To 

assess inter-annotator agreement on entities and data flows, Cohen’s kappa [33] is employed; a score of 0.85 or 

higher indicates strong consensus, ensuring that gold-standard JSONs are reliable and not subject to individual 

bias. 

4.4. Guidelines on the evaluation script and reproducibility package 

For published evaluations, it is essential to provide a reproducibility package that enables independent 

verification and replication of results. The recommended package should include the diagram image dataset, gold-

standard JSON annotation files, evaluation scripts, model-generated JSON responses, and model configurations 

(such as temperature settings). This package should be made publicly available alongside the results. A concise 

documentation file explaining the usage of each component will facilitate straightforward reproduction of 

evaluation outcomes. 

4.5. Guidelines for selection of baseline models 

To ensure fair model comparison, each ThreatVisionEval evaluation should include a standardized set of widely 

available baseline models, such as GPT-4o, Claude 3.5 Sonnet, Gemini 1.5 Pro, and Llama 3.2 Vision 90B. 

Evaluation planning should prioritize the use of the latest available models. Incorporating both established and 

new models enables consumers to assess advancements in image understanding capabilities relevant to threat 

modeling. Additionally, the cost of model usage should be considered during evaluation planning. 

4.6. Guidelines on publication checklist 

This section outlines best practices for preparing evaluations for publication. Evaluators should explicitly state 

that the ThreatVisionEval framework was employed, enabling consumers to understand the evaluation 

methodology. The full stratification table, demonstrating coverage across the six variability axes, must be included. 
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Complete TMRS score values, along with details of prompting techniques (e.g., zero-shot or chain-of-thought), 

should be reported. The dataset images, gold-standard JSON annotations, evaluation scripts, and raw model 

responses must accompany the evaluation to facilitate reproducibility and enhance transparency within the research 

community. 

5. Conclusion 

This paper introduced ThreatVisionEval, an LLM evaluation framework designed to assess the multimodal 

LLM's capabilities for understanding architectural diagrams. The framework closes critical gaps in existing general 

diagram-understanding frameworks by defining security-specific primitives. This shifts the evaluation paradigm 

towards real-world threat modeling needs. The framework proposed in the paper is designed using five pillars that 

includes a task taxonomy, diagram variability model, ground-truth schema, dedicated metric suite, and a prompt 

template library. These ensure a complete, reproducible, and extensible basis for assessing LLM’s performance. 

The evaluation closely mirrors practical Threat modeling scenarios.  

Along with the conceptual framework, the paper provides clear guidelines for practical evaluations. This helps 

researchers and practitioners realize evaluations using the ThreatVisionEval framework. The steps, including 

recommended dataset size and stratification requirements, ensure a critical assessment of the model’s capabilities. 

The guidelines also address ethical and legal considerations for dataset creation. This ensures evaluators can use 

the framework safely. The baseline model list provided in the guideline serves as a starting point for triggering 

evaluation. Evaluators are encouraged to use the latest, more capable models when available. Overall, the 

guidelines are designed to remove barriers to adoption in the research community.  

We are confident that this framework will become the benchmark for evaluating any LLM purporting to 

understand security-related architectural diagrams.  

Our future work will apply the framework to multimodal LLMs and deliver a publicly available benchmark for 

threat modeling. This will enable the research community and organizations to confidently choose the best LLM 

for automating threat modeling. 
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