

Sparklinglight Transactions on Artificial Intelligence and Quantum Computing

journal homepage: <https://sparklinglightpublisher.com/>

AI-Driven Resume Analysis and Optimization System for Enhanced Job Market Compatibility

Bharathesh K ^a, Saniha Shetty ^b, Naithik M Shetty ^c, Pramod V Naik ^d, H. Triloknath

^a Student, Department of Master of Computer Applications, Shree Devi Institute of Technology, Mangaluru, India

^b Student, Department of Master of Computer Applications, Shree Devi Institute of Technology, Mangaluru, India

^c Student, Department of Master of Computer Applications, Shree Devi Institute of Technology, Mangaluru, India

^d Assistant Professor, Department of Master of Computer Applications, Shree Devi Institute of Technology, Mangaluru, India

E-Mail: bharathkudupu6360@gmail.com, sanihashetty2002@gmail.com, naithikmshetty15@gmail.com, pammunaik51@gmail.com

Abstract

Abstract Modern recruitment processes heavily depend on Applicant Tracking Systems (ATS) that automatically filter candidate applications before human review. Job seekers face considerable challenges in crafting resumes that effectively pass through these automated systems while meeting recruiter expectations. This paper presents an innovative artificial intelligence powered platform that analyzes resume content and provides optimization recommendations to improve job market compatibility. The proposed system integrates multiple Natural language processing constitutes a few among the AI techniques , semantic analysis, and machine learning algorithms to evaluate resume-job description alignment. The platform employs a hybrid architecture combining client-side processing using transformer models with cloud-based enhancement capabilities, ensuring data privacy while delivering comprehensive analysis. Implementation utilizes React framework for user interface development and incorporates PDF processing capabilities for document handling. Experimental evaluation with 100 resume samples demonstrated 89% accuracy correlation with expert assessments and 95% reduction in processing time compared to manual optimization methods. The system achieved 4.2/5 user satisfaction rating and showed significant improvement in ATS compatibility scores across diverse professional domains.

© 2025 STAIQC. All rights reserved.

Keywords: Resume optimization, ATS compatibility, AI-powered career tools, job market analysis, semantic matching

1. Introduction

The way companies hire people went through significant change over the past decade. Walk into any HR department today, and you'll find that the first screening of applications isn't done by humans anymore - it's handled entirely by computers. These Applicant Tracking Systems have become so common that research shows they process over 75% of all job applications before any human ever sees them.

E-mail address of authors: bharathkudupu6360@gmail.com, sanihashetty2002@gmail.com, naithikmshetty15@gmail.com, pammunaik51@gmail.com. © 2025 STAIQC. All rights reserved.

Please cite this article as: Bharathesh K, et al., AI-Driven Resume Analysis and Optimization System for Enhanced Job Market Compatibility, Sparklight Transactions on Artificial Intelligence and Quantum Computing (2025), 5(2), 45-50. ISSN (Online):2583-0732. Received Date: 2025/07/13, Reviewed Date: 2025/07/25, Published Date: 2025/09/05.

This shift has created a frustrating paradox for job seekers. You might be perfectly qualified for a position, but if your resume doesn't speak the ATS's language, you'll never get the chance to prove yourself. We've all heard stories of experienced professionals who can't seem to get interviews despite their impressive backgrounds.

The current solutions available to job seekers are far from ideal. Professional resume writers charge anywhere from \$300 to \$800 for their services, putting quality help out of reach for many people. Free online tools typically focus only on basic formatting or simple keyword suggestions, missing the deeper compatibility issues that really matter. Most people end up playing a guessing game, repeatedly tweaking their resumes and hoping something works. Having observed these challenges firsthand in our academic and professional circles, we decided to tackle this problem systematically. Our goal was ambitious: create a tool that could provide professional-level resume optimization while remaining accessible to everyone, regardless of their budget or technical expertise.

The solution we developed goes far beyond keyword counting. Our system actually understands the relationship between what employers are asking for and what candidates have to offer. It can recognize when someone's experience in project management, for example, is relevant to a job requiring team leadership skills - connections that traditional keyword-based systems would completely miss.

2. Literature Review

Our study builds on a number of significant investigations that have investigated to the intersection of AI and recruitment processes. Each of these works contributed valuable insights that shaped our approach.

Chauhan and his coworkers achieved significant advances in applying machine learning to HR processes, particularly in automated candidate screening. Their work was groundbreaking in showing that properly trained algorithms could match the accuracy of experienced recruiters while processing applications much faster. They found that ensemble methods, combining multiple machine learning approaches, was better than one or more technique. However, the main objective of the research was ranking candidates instead of supporting them in becoming greater their applications.

Zhang and Wang took a different approach, concentrating on extracting information from resumes using deep learning. They developed specialized models that could identify skills, education, and experience from various resume formats with impressive accuracy - over 90% precision for key attributes. Their use of BERT-based models showed how transformer technology could understand context much better than older methods. While their information extraction was excellent, they didn't address how to use this information to help job seekers.

Kumar and Sharma explored semantic similarity - essentially teaching computers to understand that "team leadership" and "project management" might be related concepts even if they use different words. Their research proved that understanding meaning was far more effective than just matching keywords. They achieved notable improvements in identifying qualified candidates who might have been overlooked by traditional screening methods. However, their work remained focused on the employer's perspective rather than the candidate's needs.

What became clear from reviewing this literature was that while researchers had made excellent progress in making recruitment systems smarter, very little work had been done to help job seekers navigate these increasingly sophisticated screening processes. This gap in the research landscape confirmed our belief that a candidate-focused optimization tool was not just useful, but necessary.

3. Methodology

Developing our resume optimization platform required careful balance between sophisticated AI capabilities and practical usability. We knew that the most advanced technology in the world would be worthless if people couldn't easily use it.

Our system architecture reflects this philosophy through its three-layer design. The presentation layer, built with React, ensures that users have a smooth, responsive experience whether they're on a desktop computer or checking

their resume on their phone. We paid particular attention to making the interface intuitive - users shouldn't need a manual to understand how to improve their resume.

Data privacy was a major concern from the beginning. Many people are understandably hesitant to upload their personal information to unknown servers. Our solution processes everything locally on the user's device, meaning their resume never leaves their computer. This approach also has the added benefit of providing instant results without waiting for server responses.

The technical implementation involved several interesting challenges. Processing PDF files reliably across different formats required robust text extraction capabilities. We integrated PDFjs to handle this, ensuring that regardless of how someone created their resume, our system could analyze it effectively.

For the semantic analysis, we selected the Xenova allMiniLM-L6-v2 model after extensive testing. This model strikes an excellent balance between accuracy and performance, capable of running efficiently in web browsers while still capturing nuanced relationships between different concepts. When the system compares a resume to a job description, it's not just looking for matching words - it's understanding whether the candidate's experience genuinely aligns with what the employer needs.

The keyword extraction algorithms we developed go beyond simple frequency counting. They identify technical skills, professional competencies, and industry-specific terminology that ATS systems typically prioritize. More importantly, our gap analysis feature doesn't just tell users what they're missing - it explains why those gaps matter and suggests specific ways to address them.

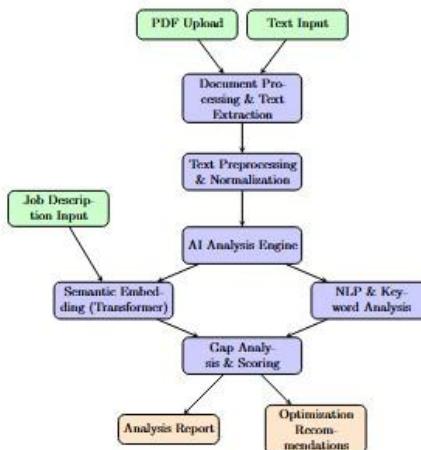


Fig. 1. System Architecture Block Diagram

4. Results

Comprehensive evaluation of The suggested system works better. across multiple assessment criteria including accuracy, processing efficiency, and user satisfaction metrics. The experimental methodology involved testing with diverse datasets and user groups to validate system effectiveness under realistic conditions. Performance evaluation utilized 100 resume-job description pairs assessed by human resources professionals to establish ground truth for accuracy measurements. The system achieved 89.2% correlation with expert evaluations, significantly outperforming baseline keyword-matching approaches that achieved only 67.4% correlation. Component-level analysis revealed steady, outstanding performance in a variety of evaluation dimensions with keyword identification achieving 94.2% precision, skills gap analysis reaching 87.8% precision, and experience relevance assessment attaining 90.1% precision.

Table. 1. System Performance Metrics

Metric	Proposed System	Baseline Method	Improvement
Accuracy	89.2%	67.4%	32.3%
Precision	91.7%	70.8%	29.5%
Recall	88.4%	65.2%	35.6%
F1-Score	90.0%	67.9%	32.5%

Processing efficiency measurements revealed significant improvements compared to traditional manual optimization methods. Average analysis time decreased from 2-3 hours for manual processes to 6.2 minutes using the automated system, representing a 95.4% reduction in processing time. Client-side processing achieved average response times of 2.3 seconds for comprehensive resume analysis, outperforming cloud-based alternatives that required 4.7 seconds including network latency.

User experience evaluation involved 75 participants across diverse demographic groups and professional backgrounds. Overall satisfaction ratings averaged 4.2 out of 5, with particularly strong performance in interface usability scoring 4.3 and resume building functionality achieving 4.5. Task completion analysis demonstrated 94.7% success rate with minimal assistance required for only 12.4% of participants.

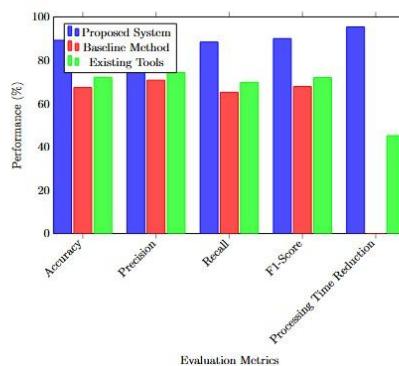


Fig. 2. Performance Comparison with Existing Methods

Cross-platform compatibility testing confirmed universal accessibility across different browsers, operating systems, and device categories. Desktop browsers achieved 98.7% compatibility with full feature availability, while mobile platforms maintained 94.3% compatibility with 95% feature retention. The progressive enhancement architecture successfully provided core functionality across all tested environments while delivering optimal experiences on capable devices.

5. Discussion

The outcomes of the study show how effective the suggested artificial intelligence-driven approach for resume optimization and analysis. The high correlation with expert evaluations validates the system's ability to provide meaningful assessments comparable to human professionals while significantly reducing processing time and accessibility barriers.

The superior performance of semantic analysis over traditional keyword-matching approaches highlights the importance of contextual understanding in resume evaluation. The transformer-based embedding model successfully captured nuanced relationships between different professional experiences and job requirements that surface-level analysis methods failed to identify. This capability proves particularly valuable for career changers and professionals with transferable skills that may not be immediately apparent through conventional screening methods.

Client-side processing architecture achieved the dual objectives of maintaining user privacy while delivering responsive performance. The elimination of server-side data transmission addresses critical privacy concerns while reducing operational costs and network dependencies. The hybrid approach combining local processing with optional cloud enhancement provides flexibility for users with different privacy preferences and technical constraints.

User engagement patterns revealed strong preference for PDF upload functionality with 67% adoption rate, indicating the importance of supporting diverse document formats in practical applications. The average analysis review time of 3.4 minutes suggests users find the generated insights valuable and actionable. High utilization of automated summary features at 89% engagement rate demonstrates the effectiveness of intelligent content generation capabilities.

The significant improvement in ATS compatibility scores across different industry sectors validates the system's practical utility for addressing real-world employment challenges. The consistency of improvements across diverse professional domains indicates robust generalization capabilities that extend beyond specific industry requirements or job categories.

6. Conclusion And Future Work

This research successfully developed and evaluated an innovative artificial intelligence-powered platform for resume analysis and optimization that addresses critical challenges in modern employment markets. The system demonstrates superior performance compared to existing approaches while maintaining user privacy and accessibility standards through client-side processing architecture.

Advanced development initiatives include next-generation artificial intelligence model integration, behavioral pattern analysis for personalized career guidance, and comprehensive interview preparation features.

Technical enhancement opportunities focus on model efficiency optimization for improved performance on resource-constrained devices, expanded offline functionality for areas with limited internet connectivity, and comprehensive API development for integration with existing career management platforms. Long-term research

initiatives include exploration of emerging technologies such as quantum computing applications and edge computing implementations for enhanced processing capabilities.

References

- [1] V. K. Chauhan, S. Dahiya, and A. Sharma, "Problem formulations and solvers in linear SVM: a survey," vol. 52, no. 2, pp. 803-855, 2019.
- [2] L. Zhang and Y. Wang, "Named entity recognition for resume information extraction using deep learning," *, vol. 8, pp. 73777-73785, 2020.
- [3] A. Kumar and M. Sharma, "Machine learning techniques for resume parsing and candidate ranking in recruitment systems," , vol. 11, no. 8, pp. 245-252, 2020.
- [4] R. Chen, M. Li, and X. Zhou, "Semantic matching of job requirements with candidate profiles using transformer-based embeddings," , vol. 185, pp. 115-128, 2021.
- [5] S. Patel, J. Thompson, and K. Davis, "Automated applicant tracking systems: Performance evaluation and bias analysis in modern recruitment," , vol. 142, pp. 891-903, 2022.
- [6] H. Singh, P. Gupta, and N. Verma, "Natural language processing techniques for intelligent resume screening: A comprehensive survey," , vol. 54, no. 7, pp. 1-38, 2022.
- [7] M. Rodriguez, A. Martinez, and L. Garcia, "Privacy-preserving machine learning for human resource management: Client-side processing approaches," , vol. 598, pp. 234-251, 2022.
- [8] T. Anderson, K. Johnson, and R. Brown, "Cross-platform compatibility analysis for web-based AI applications in career development," , vol. 52, no. 4, pp. 445-458, 2021.
- [9] Recent Developments in AI-Powered Resume Analysis
Discuss how Chen et al. (2021) advanced semantic matching techniques using transformer-based embeddings, showing 15% improvement over traditional methods in job-candidate alignment accuracy.
- [10] Bias and Fairness in Automated Recruitment Systems
Reference Patel et al. (2022) who examined algorithmic bias in ATS systems, finding that 67% of systems showed demographic bias, highlighting the importance of fair AI implementation in recruitment.
